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Abstract

A scheme for extracting sound speed information from vertical arrays in shallow

water is examined. The scheme hinges on the covariance matrix of the pressures

received at the array being diagonal in the modes of the water column, and involves

computing second derivatives of the covariance. Conditions under which the covariance

might be mode-diagonal are examined. It is found that without attenuation, it is

unlikely to find mode-diagonal covariances. However with reasonable attenuations,

the covariance will be dominated by the lowest mode. The scheme described here is

applied to vertical array data taken in 1985. Statement A per telecon Bruce Pasework
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I Introduction

The aim of this work is to examine the following question. Suppose that a vertical array of

hydrophones is deployed in shallow water. A ship passes, or there is some other source of

incoherent sound. What can be learned about the sound speed in the water as a function

depth? If the sound speed profile can be determined, the normal modes of the ocean

waveguide can be found and and then used to filter sound from unknown coherent targets

in order to localize these in range and depth [1]. Furthermore, if the sound speed could

be determined by listening to what is essentially noise, there would be no need to monitor

the sound speed at the array continually with possibly expensive drops of XBT's etc.

The theoretical impetus for this work is the observation that if sound arriving at a

vertical array is incoherent, so that modal amplitudes are uncorrelated with one another,

then, if the array spans the water column and there is little penetration into the bottom.

the eigenvectors of the covariance matrix of the pressures received at the hydrophones will

be the normal modes of the ocean waveguide. As mentioned above the modes are useful for

localizing sources, and for filtering signals in order to determine the time signature of the

source. The point of the present investigation is to see what information can be gleaned

from vertical arrays that do not span the water column and/ or are deployed where there

is significant acoustic penetration of the bottom.

In Section II a scheme will be described for extracting the sound speed from a mode-

diagonal covariance matrix. In Section III situations which might produce a mode-diagonal

covariance matrix will be discussed. In Section IV the scheme will be applied to simulated

data and in Section V the scheme will be applied to data collected in 1985 off the coast of

California near San Diego. The principle disadvantage of the method to be described below

arises from the need to compute spatial second derivatives from array data. In particular,

hydrophones on the array need to be well calibrated and well localized. Furthermore it

appears that processes which might produce sufficiently mode-diagonal covariance matrices

are unlikely to be realized. However, mode stripping via attenuation may allow the scheme

described here to work.



II Extracting the sound speed

In shallow water the sound pressure field p(z) arriving at a vertical array can be represented

as a superposition (linear combination) of normal modes {Jn(z), n = 1...N},

N

p(z) = Zan n(z). (1)

In Section III conditions under which the modal amplitudes an might be uncorrelated will

be discussed. For now simply assume that there is some averaging proceedure for which

(ana* ) = Anbn,,,m. (2)

If this is the case the pressure will be said to be mode-diagonal, and the covariance matrix

F of the pressure received at hydrophones located at depths {zi, i = 1...Nph} will be given

by
N

r(zi, zj) =_(p(zi)p*(zj)) = An¢,(zi)¢,n(zj). (3)

n=l

If the hydrophones are uniformly and closely spaced (with separation A) then discrete

sums approximate integrals. Furthermore, if the hydrophones span the water column and

the normal modes On vanish or nearly vanish in the bottom, then the orthonormality of

the modes gives Nph

Z-d0n(zi)Om(zi)A ' J o.n(z)qp(z)dz = ,n,.. (4)

This in turn means that

Nph
E F(zi, zj)O¢. (zj)A ;:t A,,ýOn(zi). (5)
j=1

In other words, the Nph dimensional vector .m(Zi) is an eigenvector of the covariance

matrix r with eigenvalue Am/A. Hence to extract the acoustic normal modes from the

incoherent covariance matrix F , simply find its eigenvectors. These eigenvpctors can b-

used subsequently to filter more coherent signals from unknown sources. For example.

suppose the pressure at time t and depth z is given by

N

p(z,t) = If(w)exp(iwt) Z exp[-ikn(w)r]hn(z)on(zs), / vtkrdw (6)
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Assuming that the source is reasonably narrow in frequency and centered on W,, write

kn(w) = k(.(wo) + (w - wo)/v,. (7)

where v, is the group velocity of the nth mode. Integration over frequency then gives

a sum of delayed replicas of the source (delayed by r/v, ) and filtering with one of the

modes gives a single replica of the source function:

J .m(Z)p(z, t)dz ; 0,1,m(Zs)f(t - r/vm)/ kr. (8)

The method of finding modes from the eigenvectors of F fails if the array does not

extend over the entire region where the modes are appreciable. In this case one can make

use of more known information about the modes, namely that they satisfy the separated

wave equation,

dZ2  c(Z)2  I 2[z--- C .(9)

Forgetting for the moment that the hydrophone array is not continuous, differentiate the

covariance matrix

F(z, z') = (p(z)p*(z')) = ZAn.n(z)¢*(z'), (10)
n

twice with respect to z and subtract the result of differentiating twice with respect to z'

to show
____ -[Red

2 'z~' _ d2F ~ z z')].
c(z) 2  c(Z-)2  [R dz'2  dz 2  )J /Rc[(z,z')]. (11)

No terms involxing the real parts of the horizontal wave numbers k, appear because the

covariance is diagonal in mode number. (In what follows attenuation is assumed sufficiently

small that the modes are real to a good approximation and that the imaginary parts of

the wave numbers kn may be determined perturbatively.) Terms involving imagainary

parts of the wavenumbers also involve the imaginary parts of the mode functions 6,.

Hence these terms are at least quadratic in the attenuations and are assumed negligible.

A problem with this neglect might occur when sound speeds (assumed real in the water

column) at the depths z and z' are equal. Equation 1I is the main new result of this work.

It implies that the sound speed profile can be determined to within an overall constant

whenever second derivatives of the covariance matrix can be computed. It makes some

sense that the result is ambiguous as to this constant. oince addiiig a cmhisi•[Oi toI the



index of refraction does not change the propagation in the medium. Note that the sound

speed is only determined at the array, and all that is assumed is that the covariance of

the pressure field is mode-diagonal at the array. This is a considerably weaker assumption

than the assumption of adiabatic propagation between source and receiver. However,

hydrophones need to be sufficiently close to one another so that it is possible to determine

reasonable approximations for the second derivatives, but not so close that measurement

errors are larger than the small differences between the pressures at adjacent phones. In

fact, computing the second derivatives is the primary disadvantage of the scheme implicit

in Eq.11. Before turning to the difficulties in applying Eq.l1, however, circumstances in

which the covariance matrix might be mode-diagonal will be examined in the next section.
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III When is the Covariance Mode-Diagonal?

Suppose that the ocean is not considered to be random, but that the source location is

either unknown, or distributed uniformly in a horizontal plane, or is moving about and

one averages the covariance over a time in whch the source has moved over a considerable

range (neglecting Doppler effects). Assume that the ocean does not vary in azimuth and

that the pressure is observed at a single frequency. The pressure at a depth z is given by

p(z) = E exp(-iknr)O,(z.,)¢,(z)f(L.')/ @kr. (12)
n

Form p(z)p*(zI) and average over ranges using

1rR+p/2
SJ/ ... rdrP J -p/2

to get

• sin[(kn -z kz )p/2]
F(z,z') Zexp[-i(kn-km )R-s(k--- M 2 -i 2 m ,,

n,m (kn - k;)p/2
(13)

Note that the horizontal wave numbers might have imaginary parts as a result of atten-

uation, intrinsic or otherwise. In the double sum, as p -* oc the sinc function becomes a

Kronecker delta in mode number if the wave numbers are real. If the wavenumbers are

complex, denote their imaginary parts by -an. It can be seen that if

J(Re(kn) - Re(k.))pl > -,r

and

(am + an)p < 1

then the terms in the double sum for which n $ mn will be much smaller than the terms

n = m. This is to say that the covariance matrix will be diagonal in mode number if

there is little attenuation over the averaging distance p and if the modes have a chance to

"beat" against one another in the averaging distance.

Instead of averaging over range, it is also possible to average over frequencies to produce

a covariance matrix which is nearly diagonal in mode number. If A(w) is a stationary

random process then

((w)*(w')) = S(w) 6(w - w'). (14)
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Assume that the spectrum of the source, S(w) is fiat about W = w, ovcr the bandwidth Aw

and vanishes for 1w - wol > Aw/2 . Use Eq.7 to expand the phase of the pressures Eq.12

about the center frequency of the source, w,, but assume that the frequency dependence of

the modes and the of the denominators in Eq.12 can be ignored. Using these assumptions,

and forming

P(z,z') = Jdw I dw (p(z,),n*(z',w'))

gives
. sin[(1/v, - 1/vm)RAw/2]

(z,z') = exp[(k- k)R] 1v - 1/v )RAw/2

S(Wo)¢n( zs)¢m( Zs)¢n( Z)4m( Z')/( R k ). (15)

This form of F is the same as that given by range averaging in Eq.13 except that here the

argument of the sinc function is now (1/v, - 1/v; )RAw/2. If At = 1/Aw. the duration of

a pulse, and if the group velocities are real, then the condition giving rise to a kronecker

delta in mode number is

l(Re(T/v,) - Re(r/vm)Aw)l = j(1, - t,,)/Atj > 7r.

In other words the covariance will be diagonal in mode number if the times of arrival of

pulses in modes n and m are separated by a time much greater than that of the original

pulse width. It would seem that one could choose the range of transmission R sufficiently

large so that this is the case.

Finally there is a third, almost trivial, case in which the covariance will be diagonal

in mode number. If the distance between source and receiver is sufficiently large and

if there is high attenuation arising either from frictional losses in the bottom or from

loss of coherence at the various interfaces in the ocean, then only the first mode will be

appreciable at the receiver. If so, the covariance matrix will be of the form

r(z, z') = A.O,(z)Oo(z'). (16)

and r is trivially diagonal in mode number. This case is mentioned here because it appears

that the data set available for testing the scheme outlined above is in fact dominated by

the first mode. Furthermore, the simulations discussed below indicate that averaging over

range might require unrealizable averaging distances if there is no attenuation.
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IV Simulated Covariances

In this section simulated covariances are examined in order to determine the feasibility

of applying Eq.(11) to determine sound speed profiles. In all cases normal modes are

computed using the normal mode code KRAKEN [2, 3]. Since computation of fields at

different ranges is considerably easier than computation of fields at different frequencies,

only range averaged covariance matrices will be considered here. Using simulations it is

relatively easy to see how limited averaging affects Eq. 13 and the sound speed inferred

from such a covariance matrix.

In all cases to follow we will deal with a sound speed profile similar to the sound speed

in the part of the ocean from which the data in the next section was taken. Specifically

we assume shallow water 18 m deep with a source centered on 400 Hz. The sound speed

in the water column varies from 1415 m/sec at the top to 1404 m/sec near the bottom.

Details are given in Table I. In the actual experiment, source and receiver were separated

by 3.7 km. The bottom properties were not measured; however, it is known that the

bottom consisted of coarse sand. One of the main points of the present discussion is that

the attenuation in the bottom and the roughness of the sea surface and bottom interfaces

are critical for deciding if the covariance is mode diagonal. Hence simulations for various

attenuations and roughnesses will be considered.

We first examine the question of how much averaging needs to be done in order that

the covariance be diagonal in mode number. Suppose that there is no attenuation and

that somehow the sound could be measured at all depths, including in the ocean bottom.

Then the covariance matrix would be diagonal in mode number if the matrix

Anm = exp[-i(k k- sin[(k,, - km)P/2] (17), = m)R(k.- k-•)-(p12)r.-,,(1

is diagonal. One can see how much mixing of modes there is by looking at the eigenvectors

of A. To apply Eq.11 these eigenvectors should be of the form

e()

Figure 1 shows a plot of Re(A) when R = 3700m, and p = 1000m using the wave numbers

in table II. The matrix A appears to be reasonably diagonal. However, Fig 2 shows that

the first four of seven eigenvectors of A significantly mix adjacent modes. In this case it
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is unlikely that either the second-derivative scheme for determining the sound speed will

succeed, or that the eigenvectors of F will correspond to the modes of the water column.

Fig 3 displays the eigenvectors of the matrix A when p = 10,000 m. The first and fourth

eigenvectors are dominated by a single mode; the second and third eigenvectors show

significant mixing of modes. When p = 100 kin, all of the eigenvectors of A have adjacent

modes mixed in with amplitudes less than 1 percent. One could say that the case of

p = 10000 m is marginal, and that to extract the modes or the sound speed profile one

should have the averaging distance p greater than 10,000 m for the wavenumber separations

of this problem.

Similar computations could be made for the case of frequency averaging. However, we

can see that A is almost sufficiently diagonal when the argument of the sinc function is

about

(kl - k2 )p/2 ,t .02 * (10000)/2 = 100.

In the case of frequency averaging it would seem that one needs (See Eq.15)

J(R/vl) - (R/V 2 )1 * Aw/2 ý:: 100.

Using R = 3700 and v, = 1410, v2 = 1395 means that the bandwidth should satisfy

Af > 1000Hz.

Unfortunately the bandwidth in the experiment from which data in the next section is

derived was only 80 Hz.

Consider now how the sound speed can be extracted. Using an averaging distance

p = 100km we would think that the covariance matrix would be sufficiently mode diagonal.

In accordance with the experimental data to be described in the next section, consider

an array of 25 equally spaced hydrophones located at depths of .11 m to 16.502 m and

spaced .683 m apar*. Compute second derivatives using fifth-order finite differences and

apply Eq. 11. The inferred indices of refraction are adjusted so that mean of the input

profile is nearly the same as that of the inferred profile. The result of this proceedure is

shown in Fig. 4. The point here is that without noise, and when the covariance matrix is

nearly mode-diagonal, the scheme implied by Eq. 11 only gives a marginal fit. However,

if the covariance is constructed from only the first mode, the fit to the input sound speed
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is much better. (See Fig 5.) The discrepancy here between the inferred sound speed and

the sound speed used to construct the simulations must be attributable to the process of

forming second derivatives from fifth-order finite differences. For comparison with cases

involving attenuation, Fig. 6 shows the covariance matrix itself for this single mode.

Now suppose that there is even less range averaging to make the covariance mode-

diagonal. The proceedure just described, but now with p = 1Okm yields the results shown

in Fig. 7. The inferred sound speed profile is not too different than that obtained with

p = 100 km. It is possible that in these cases the higher-order modes are not sampled well

enough to allow good approximations of the second derivatives. For this case, the 25 x 25

covariance matrix is plotted as a surface in Fig. 8. However, in Fig. 9 is plotted the

-ovariance matrix computed with p = 1kmi, but now with more realistic roughness and

attenuations. This covariance h'js a considerably different shape than than the covariances

computed without attenuation. In fact, it is dominated by the lowest, least attenuated

mode. This can be seen in Table 3 which shows the eigenvaldes of this matrix, and by

comparing Fig. 6, the covariance computed with the first mode. Thus this matrix is

almost trivially mode-diagonal, since there is virtually only one mode, and the results of

applying our extraction scheme should be better than those obtained in Fig. 4. This is

demonstrated in Fig. 10. Note that when the covariance is dominated by a single mode,

the real part will be positive. Significant contributions from other modes will cause the real

part to change sign for some matrix elements. Finally, the simulations shown in Figs. 9

and 11 demonstrate that the shape of the covariance matrix when there is bulk attenuation

and the shape of the covariance matrix when there is both bulk attenuation and surface

roughness are noticeably different. The latter seems to be even more dominated by a

single mode.

V Data

An experiment which took place off the coast of California near San Diego provided a

simple data set taken with a vertical array. Unfortunately the parameters of this experi-

ment were marginal at best for the purpose of the extraction scheme described here. In

the experiment a source located on the bottom in 18 m of water emitted a pseudo-randoni

signal of nominal bandwith 80 Hz. The signal was received on a vertical array located
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3.7 km from the source. Divers indicated that the bottom was nearly featureless, but

there were no detailed measurements of the bottom roughness nor of the attenuations

and sound speeds in the bottom. What is known is that the bottom consisted of coarse

sand. Temperature profiles were measured near the receiving array near the time of the

experiment. However, these were recorded in plots of isotherms in depth and time. The

sound speed which is compa~ed wiUh the results of our extraction scheme was derived from

these rather crude plots. It is this sound speed profile which was used in the simulations

of the previous section. However, the most severe fimitation on the experimental data

is that the hydrophones werf, not well calibrated and, in fact, of the 25 phones on the

array about 5 were nearly dead. Fig. 12 shows a plot of the real part of the covariance

mnatrix filtered in an 80 [Iz band centered on 400 Hz. The deep creases in Fig. 12 show

that about five of the hydrophones were not functioning properly. To try to overcome

this problem, the results of the 'bad' hydrophones were scaled so that the intensities of

the scaled output interpolated the intensities of neighboring hydrophones located 0l: each

side. (This, of course, does not really solve the problem, since it is second derivatives we

are after.) Fig. 13 shows the result of this interpolation scheme. This 'corrected' matrix

was used to extract the sound speed profile. Note that this matrix is much more similar

to the matrices of Figs. 6 and 9 than to those of Figs. 8 and 11. It seems to be dominated

by a single mode. One can surmise that attenuation is playing a dominant role here and

that the averaging over the frequency band of 80 Hz is not critical.

The imaginary part of this covariance matrix did not vanish. This could indicate

either that the array was not vertical or that in fact .' covariance is not diagonal in

mode number. If the array were not vertical the extraction scheme can to some extent

correct for this by multiplying by a phase phase factor designed to minimize the imaginary

parts of the resulting covariance elements. There is not much to be done if the covariance

is not mo(!e diagonal.

At this frequency, the hydrophone spacing of .68 m rewr..nts about 1/5 acoustic

wavelengths. Thus one might think +hat the sound field is well sampled by the array.

However, the simulations indicate that this might not be the case. For the fith mode. for

example, nodes will be spaced about 4.5 m apart. There are 4.5/.683= 6.6 sample points

between nodes. As indicated above, the contributions from liigher modes do not yield

good sound speed estimates at this sampling rate.

10



Despite these difficulties we tried to apply the extraction scheme. Various smoothing

methods were tried to clean up the data. but the most successful seemed to be using

a 5 point finite difference formula to conmpute second derivatives and then applying a

Gaussian filter to further smooth the arrays of estimated second derivatives [4]. The

results are shown in Fig. 14 The estimations near the endpoints of the array were wildly

wrong in the case of simulations and in this application to data. Extracted va~ues near

the ends are therefore not plotted. Except for the values of the sound speed near the

ends of the array, the sound speed extracted in Fig. 14 pretty much follows the trends

of the measured sound speed. Hlowever. different smoothing schemes and different ways

of estimating derivatives gave quite differvint results. Gi;een the poor quality of tile data

here, it might not be surprising that a reasotnable sound speed is hard to extract.

VI Acknowledgements

This work was supported by a grant from the Naval Research Laboratory, Washington,

DC

References

[1] T. C. Yang. -A method of range and depth estimation by modal decomposition." .1.

Ncoust. Soc. Am. 82. 1736-15 (1987).

[2] Michael B. Porter. "The KPAKEN normal mode program." SACLANT Undersea

Research Centre Memorandum (SM-2-15) / Naval Research Laboratory Mem. Rep.

6920 (1991).

[3] Michael B. Porter and Edward L. Reiss. "A Numerical Method for Ocean Acoustic

Normal Modes." .J. Acoust. Soc. Am. 76 2AA4-252 (1984).

[4] W. H. Press, B. Flannery, S. Teukolsky and W. Vettering, Numerical Rccipcs (Cam-

bridge University Press, 1986) pp. 495-97.

II



Table Captions

1. Sound speeds as a function of depth used to construct the simulations in this pa-

per. This is a three layered medium. Bottom and sub-bottom are characterized by

discontinuities in either density or sound speed, but these quantities are constant

within these layers. In some of the simulated results attenuation was added to the

bottom and sub-bottom and roughness to the interface.

2. The group and phase velocities of the propagating modes of the profile of Table 1 at

400 Hz.

3. The first six eigenvalues of the covariance matrix of Fig. 9. It is likely that the

smallest values are numerical noise.

Figure Captions

1. The matr;x A of Eq. 17 when R = 3.7 km and p = 1 km.

2. The first four eigenvectors of the matrix A displayed in Fig. 1. Note how there is

mixing of the basis set.

3. The first four eigenvectors of A computed with R = 3.7 km and p = 10 km.

4. Comparison of the extracted sound speed profile, (open squares) with the sound

speed (filled diamonds) used to construct the covariance matrix. In this case the

covariance was contructed with the six propagating modes at a range of 3.7 km and

using an averaging distance of 100 kmi. No attenuation or roughness was used. The

phase velocities of these modes are listed in TFable II.

5. The extracted sound speed as in Fig. 4. Now only the first mode was used to

construct the covariance.

6. The real part of the covariance matrix (X 106) used in Fig. 5. Cross-sections parallel

to say the x-z plane show the shape of the lowest order normal mode.

7. The extracted sound speed as in Fig. 4. Here the averaging distance p was 10 kmi.

The result is virtually the same as when the averaging distance was 100 kmi.
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8. The rcal part of the covariance matrix (x 106 ) used in Fig. 7. With all modes present

and no attenuation, the covariance shows considerable structure across the diagonal

and little structure parallel to the diagonal. Note that the covariance matrix can

become negative.

9. The real part of the covariance matrix (x 106) computed as in Fig. 8. However,

here the averaging distance p was 1 km and the environment included both surface

roughness and attenuation in the bottom. The bottom attenuation in both layers

was taken to be .47 dB/(kHz-m). The rms roughness at the top interface was .25

m, at the water-sediment interface .5 m, and at the bottom interface .5 m. Note the

similarity to the single-mode covariance of Fig. 6.

10. The sound speed inferred from the covariance of Fig. 9.

11. The real part of the covariance computed as in Fig. 8. Here the averaging distance

was 3 km and there is no surface roughness. The attenutation in the bottom was

.15 dB/(kHz-m).

12. The real part of the covariance (x 10-11) taken from experiment near San Diego. The

deep creases indicate that a number of the hydrophones were not working properly.

13. The same data as in Fig. 12 with results of the dysfunctional hydrophones scaled

by factors which gave smooth intensities.

14. The sound speed inferred from the covariance of Fig. 13. The extreme behavior at

the ends of the array arises from the smoothing scheme and the difficulty of finding

derivatives at the ends of arrays.
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Table I

Depth Sound Speed Density

.00 1415.00 1.03

.75 1414.83 1.03

3.00 1413.53 1.03

5.75 1412.20 1.03

7.00 1410.86 1.03

10.75 1409.52 1.03

11.25 1408.11 1.03

13.00 1406.70 1.03

16.50 1405.29 1.03

18.00 1404.25 1.03

Bottom:

18.00 1700.00 1.50

29.00 1700.00 1.50

Sub-botton

28.00 1700.00 2.10
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Table II

MODE GROUP VEL PHASE VEL

1 .140406E+04 .177627E+01

2 .138978E+04 .175357E+01

3 .136344E+04 .171546E±01

4 .132485E+04 .166096E+01

5 .127481E+04 .158776E+01

6 .123629E+04 .149634E±01

15



Table III: First 6 Eigenvalues of Covariance

No. Eigenvalue

1 9.2 E-5

2 5.9 E-6

3 6.9 E-9

4 -2.1 E-9

5 -1.9 E-9

6 -2.0 E-9
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